Euro. Jnl of Applied Mathematics (1993), vol. 4, pp. 241-270. © 1993 Cambridge University Press 241

Cardiac magnetic resonance imaging by
retrospective gating: mathematical modelling and
reconstruction algorithms

J.B.T.M.ROERDINK and M. ZWAAN

Centre for Mathematics and Computer Science, PO Box 4079, 1009 AB Amsterdam, The Netherlands
(Received in revised form 12 June 1992)

This paper is concerned with some mathematical aspects of magnetic resonance imaging (MRI)
of the beating human heart. In particular, we investigate the so-called retrospective gating
technique which is a non-triggered technique for data acquisition and reconstruction of
(approximately) periodically changing organs like the heart. We formulate the reconstruction
problem as a moment problem in a Hilbert space and give the solution method. The stability
of the solution is investigated and various error estimates are given. The reconstruction method
consists of temporal interpolation followed by spatial Fourier inversion. Different choices for
the Hilbert space # of interpolating functions are possible. In particular, we study the case
where A is (i) the space of bandlimited functions, or (ii) the space of spline functions of odd
degree. The theory is applied to reconstructions from synthetic data as well as real MRI data.

1 Introduction

Magnetic resonance imaging (MRI) is a diagnostic technique to measure and display cross-
sections of human organs. In this paper we consider the reconstruction of a cross-section
of the beating heart. The general problem in dynamic MRI is that because of physical
limitations, the standard measurement technique is not fast enough to acquire all the data
necessary for the reconstruction of a single heart phase, in a time which is short enough that
the motion of the heart is negligible.!

In the case of the beating heart, one can make use of the (approximate) periodicity of the
motion. That is, data corresponding to the same relative heart phase may be recorded in
different heartbeats. This presupposes exact reproducibility of the heart motion in
successive cycles, a condition which will be violated in practice. There have been various
ways to deal with this problem. McKinnon & Bates [1], who considered cardiac imaging in
the context of computerized tomography (CT), assumed the number of cycles to be
sufficiently small so that the heart motion during these cycles can be assumed to be ‘quasi-
stationary’.

Another alternative, which will be pursued in this paper, is to assume that there is a
simple rule to map heart intervals of different duration to a standard heart interval of unit
length in such a way that data are assigned to the correct heart phase. To perform this
synchronization of the data, the electrocardiogram (ECGQG) is simultaneously recorded and

! There are reports of attempts to do real time imaging (see e.g. Mansfield & Morris [5]).
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used as a reference signal. The condition that the heart motion in different heart beats is
identical up to a possible time rescaling will be referred to as the ‘basic assumption’ in the
following. Since the synchronization of the data is carried out retrospectively, i.e. after data
acquisition has been completed, the method has been referred to as ‘retrospective gating’
[2]; this is in contrast to ordinary gating or triggering, where the ECG is used for
synchronization during data acquisition.

The organization of the paper is as follows. In §2 we first review the data acquisition
process of MRI in general. Then we discuss the retrospective gating technique for cardiac
imaging and explain how reconstructions at different heart phases can in principle be
obtained. In §3 a mathematical problem formulation is given and we describe the
previously obtained solution method [7-9]. We also consider optimal reconstruction
methods in the presence of measurement noise. §4 contains reconstructions from synthetic
data as well from perturbed data. Reconstructions from real MRI data are presented in §5.
In §6 we summarize the results, and present a discussion of future prospects.

2 Cardiac magnetic resonance imaging

In this section we give an introduction to dynamic cardiac imaging by MRI techniques. In
particular, we explain the data acquisition based upon the concept of ‘retrospective gating’,
as compared to the more conventional technique of ECG-triggered cardiac imaging. To
make the paper reasonably self-contained, we start with a brief discussion of the principles

of MRI for static objects. For background material on this topic the reader is referred
elsewhere [3-6].

2.1 Static MRI

In a MR imaging system, the object is placed in a strong external magnetic field B along
some axis, say the z-direction,?

B=(B,+G-r)%. Q.1

Here B, is a static homogeneous field and the G-r term, with G = G (1) X+ G (1) p+ G (1) Z,
represents small field gradients whose strengths are controllable.

The basic purpose in MRI is to obtain an image of the density of protons in human
tissue. Each proton has a “spin’, and can be considered as a small spinning top. When
placed in a magnetic field B, each spin will perform a precession around the field direction
with the so-called Larmor frequency w, = yB,. Here v is a constant called the gyromagnetic
ratio. The density of spins of the nuclear spin system is called the ‘net magnetization’ vector
and denoted by m. After application of the main field B,, the component m, of the
magnetization in the z-direction (also referred to as the longitudinal magnetization) evolves
towards thermodynamic equilibrium,

A1) = My €0 g1 —e 7], 2.2)

where 7] is the longitudinal (or spin-lattice) relaxation time, m,_, is the initial magnetization
and my, is the equilibrium magnetization.

* X, yand 7 denote unit vectors in the x-, y- and z-directions, respectively. Bold face symbols denote
vectors.
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A spin system in equilibrium can be excited by applying a short magnetic field pulse B(f)
at radiofrequency (RF), with a frequency w,, which will usually be chosen equal to the
Larmor frequency w, (‘resonance condition’). After termination of the RF pulse, the spins
start to get out of phase due to mutual interactions. This causes the transverse

magnetization m, = m, +im,(i* =—1) to relax exponentially towards zero with a
characteristic decay time T,, called the transverse or spin-spin relaxation time:
m (1) =m, (0)e ™ . (2.3)

At the same time, the longitudinal magnetization relaxes towards its equilibrium value m,,
with the relaxation time 7;, which is generally much larger than 7,. During relaxation, the
excited spins give up energy at their Larmor frequencies in the form of radiofrequency
radiation, which is recorded by a receiver RF coil. The resulting free induction decay (FID)
signal is recorded in the form

S(7) = constant fm L(r, D) ettt dr, (2.4)

2.1.1 Spatial encoding of the MR signal

To construct an image, the FID signal is spatially coded by making the magnetic field
spatially varying so that the Larmor or resonance frequency becomes a function of
position, e.g. by applying linear fields gradients (see (2.1)). If the system is again excited,
now by a broad band RF pulse, the recorded signal has the form

t

S(t) = constant J‘m L(r,)exp [i ( f dr' w(r, t)—w,, 1)] dr. (2.5)
0

If we assume that the measuring time is much smaller than 7; and 7;, and use the fact that

the transverse magnetization m  (r, 0) just after termination of the RF pulse is proportional

to the local proton density f(r), the recorded signal is approximately equal to

S(1) = constant Jf (r)exp (— iy Jt dr' G(t)- r) dr. (2.6)

Writing £ = (£,,£,,£,) :=yj:dt’ G(1), we recognize (2.6) as the Fourier coefficient of the
function f(r) at the Fourier frequency vector (or ‘wave vector’) £. By taking values of S(¢)
at successive time intervals one obtains a so-called ‘trajectory’ in £-space, i.e. a sequence
of samples of the Fourier transform of f(r) [6]. For the later discussion of dynamic imaging
we emphasize that it takes a finite amount of time to measure a trajectory.

Next we describe a method for choosing the gradient fields using square wave gradient
pulses of constant magnitude and varying duration [3, 5]. By turning on a z-gradient G,
during excitation by the RF pulse, a very narrow slice perpendicular to the z-direction is
excited. To provide spatial encoding within the selected plane, one subsequently turns on
a phase-encoding gradient G, in the y-direction during a time #,. This gives all the spins on
the line y = constant a phase factor yG, . Finally, one applies a readout gradient G, in the
x-direction, during which the FID signal is recorded and sampled every &t seconds at times
t; = (—3km*4) 8¢z, j=0,1, ..., k7* — 1, where k** (assumed to be even) is the number of
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FIGURE 1. Profiles in the Fourier plane.

sampling points. Here the sampling time is set to zero in the middle of the measuring
period. Similarly, G, is varied in steps of size AG, from —3k7** AG, to (3k;** —1) AG, with
t, fixed. The sequence of measurements {S(¢,):/ =0, kma"—— 13, w1th G, fixed, gives the
Fourier transform for a discrete number of points on a horizontal line in the (£.-£,)-plane;
such a horizontal trajectory is called a profile (see Fig. 1). A complete sequence of RF and
gradient pulses is sketched in Fig. 2. To avoid aliasing by undersampling, both 8¢ and AG,
should be chosen in accordance with the Nyquist relation for sampling bandlimited
functions:

AE,=2m/L, AL, =2n/L, .7

where AZ, and AZ, are the sampling distances in Fourier space and L, and L, are the fields
of view in the x- and y-direction respectively. Since AZ, = yG, 8¢ and Ag, = yt,AG, this
yields

6t =2m/(yG,L,), AG,=2m/(yt,L,). 2.8)
Summarizing, the (normalized) sampled signal as a function of £, and ¢, equals
S(gx,gy) = jdx def(x,y) e—i(ﬁ,ngyy), (2.9)
where £, = yG, 8tk, = 2m/L,)k, and £, = yt,AG, k,= (2m/L)k, with k, = —3k0**, ...,
Yemx—1 and k, = —km/2, .. emex— 1,

An estimate f(x, y) of the proton density f(x, y) of the selected slice is then constructed
by performing the discrete inverse Fourier transform:

- B _k;nax 1 lkmn.x 27T 27T
fooy =L s s S(Lx 2

k __}ik;naxk —— _kmax

ky) ei((Zﬂ/LI) kzx+(27v/Ly) kyY) X (2 10)

Yy

This transform can be efficiently implemented by the Fast Fourier Transform (FFT), see
e.g. Nussbaumer [10].
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FIGURE 2. Sequences of gradient fields G,, G,, G,, rf-pulse RF and echo S(1).

Apart from the various approximations made earlier (neglect of relaxation times,
assumption of perfectly homogeneous fields, etc.), truncation of the sampling series is
another cause of inaccuracy, leading to finite sampling errors such as ringing artefacts
(Gibbs’ phenomenon). These problems can be resolved by special signal processing
techniques such as the use of data windows [11].

2.2 Dynamic cardiac MRI
2.2.1 Acquisition principle of retrospective gating

For diagnostic purposes a movie of the heart based upon several reconstructed heart phases
will give useful information (e.g. cardiac output, heartwall motion, leaking heart valves)
not easily obtained from static pictures. In the conventional ECG-triggered technique [12],
the same slice is excited with a fixed number of RF pulses following the R-wave of the ECG.
After this, the scanning system waits for the next R-wave before increasing the phase-
encoding gradient. This means that no data are measured in the latter portion of relatively
long heartbeats, leading to increased signal intensity during the first few frames of the
image sequence, which manifests itself as a ‘lightning’ artifact.

The method of retrospective gating has been proposed to overcome these difficulties [2,
13, 14]. In this technique, there is an uninterrupted sequence of profile measurements with
a fixed repetition time T,,. Recall that a profile is a sequence of measurements with k,, fixed
and k, increasing from —3kT®* to $k7**—1. Simultaneously, but independently of the
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FIGURE 3. Acquisition method of retrospective gating. Large vertical bar: R-wave. Small vertical
bar: a profile.

profile measurements, the ECG is recorded to enable a posteriori synchronization of the
data to the correct heart phase (see Fig. 3). This means that the steady state condition of
the spins is not disturbed, thus avoiding the lightning artefact. Another advantage is that
the latter part of each heart cycle is covered too.

In principle, the value k, of the phase-encoding gradient should be increased after each
heartbeat. But during the measuring process the information about the duration of the
heartbeats is not available to control data acquisition. Therefore k, is increased after a fixed
number N,, of profile measurements. For example, one may take N, = Tir/ Tep» Where Tpp
is the average RR-interval (time between two successive R-waves).

To get good image quality, the time resolution — as determined by the repetition time 7;,
— should be small enough. In practice, T, may be of the order of 100 ms or less. To achieve
this, a gradient sequence based on the so-called ‘spin-echo technique’ with a small flip-
angle 6 is used, so that the spin system returns to equilibrium in a short time, after which
the next profile can be measured.

To sum up, the data acquisition process contains the following steps:

(i) Initialize the phase encoding gradient: k, = —3k}™*.
(i) Measure profiles with a repetition time 7;., until N profiles have been recorded.
Each profile consists of kT** measurements (k, = —3k7**, ..., 3k7**—1) of the

Fourier transform of the cross-section, with k, fixed.
(iii) Increase the phase-encoding gradient: k,~k,+1; go to (ii). If k, = 3k —1, stop.
(iv) Simultaneously measure the times R, of occurrence of the R-waves.

2.2.2 Reconstruction

After data acquisition has been completed, we want to reconstruct pictures of the heart at
various phases during the heartbeat. Because of the basic assumption (see the introduction),
there exists a fixed RR-interval, referred to as the standard heart interval, on which to map
the data recorded during heartbeats of different duration. Without loss of generality we
take this fixed RR-interval as I:=[0, 1]. For clarity, we will refer to original measurement
time as ‘time’ 7, and to relative time on the standard heart interval as ‘phase’ ¢. Probably
the simplest rule to convert measurement time to heart phase is /inear stretching, where the
total duration of a heartbeat is used to renormalize the measurement times.
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FIGURE 4. Reordering of the time markers by the time-to-phase conversion.

To make the above more precise we first introduce some notation. Let the proton density
at position (x, y) of a cross-section and at time 7 be denoted by F(x, y, 7). 7€ R. The function
to be reconstructed is the proton density f{x, y, ) at position (x,y) and phase £, 0 <r < 1.
So, if D denotes a domain in the plane R?, we have that F: D x R~ R and f: D x [ - R. Each
measurement of F at time 7 corresponds to a measurement of f at a converted time #(7):

F(x,y,7) = fe, 0 (7)), te[0, 11. Q2.11)

In the case of linear stretching, the relation between 7 and ¢ is

t(7) = 7[R, Ry 1) (2.12)

—R,
h-rl R
where R, is the time at which the kth R-wave occurs, for k= 1,2,..

Notice that as a result of the time-to-phase conversion, the data are reordered when a
new R-wave occurs while the value of k, is still unchanged, the next profile belongs to the
beginning of the standard heart interval /, while the previous profile belongs to the end of
I (see Fig. 4). The next problem is that the reordered phases do not match with the wanted
phases, which usually are a number of equally spaced values on the standard heart interval.
Also, for each value of k, the pattern of reordered phases will be different. This problem
can be solved by some form of interpolation. The details will be given in the next section.

In the acquisition method described above, the middle sample (corresponding to k, = 0)
of the ith profile at the &, th phase-encoding step occurs at time

1(k,) = (k,Np+D T =01 N, —1, (2.13)
where 7;,, is the repetition time. Let the total measurement time of a single profile be
denoted by T,.,. Then the time between two successive samples in a profile equals

8t = T, /K™, (2.14)

since the total number of samples in a profile is K7**. Therefore, the measurement of the
k th sample of the ith profile at the k,th phase-encoding step takes place at the time

ik, k) =Tk, +k, ot (2.15)

Ty
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At time 7,(k,, k,) we measure the Fourier coefficient F(kz, Tk, k). After the time-to-
phase conversion, the Fourier coefficients of F at the times 7,(k,, k,) are interpreted as the
Fourier coefficients of f at the phases

ti(kx’ ky) = t(‘ri(kx’ y)) (216)

In the ideal case of a perfectly regular heartbeat (i.e. R,,; — R, = Tpr = N, T,,) and in the
case of linear stretching, one has

iy k)= Ry _ iTey +k, 81

+
ke ky) - 7;212 T;m

2.17)

So in this case there is no dependence on %, and the sampling is uniform in i. However, in
practice there will be both k, -dependence and non-uniform sampling.
We thus end up with the following mathematical problem formulation:

Let f:D x IR be a function (x, y, )~ f(x, y,1), where D is a rectangle of dimension L, by
L, in the plane and I = [0, 1] a unit time interval. Let the spatial Fourier transform of f be
defined by

f(kr, - )= 2_17;'[“[ f(x,y, ) e~ @nIL) Ky 2+Q2n(Ly) ky¥) ] x dy. Q. 18)
D
Assume we have measured
gi(kz’ y) f(kz’ ky> I (kz’ k )) (2 19)
Jor k, = —3kpex, k=1 k, = —3k, 3k —1land i =0, ..., N, —1. The problem
then is: find a functzon [ DxI-R such that
f(k:w Y2 i(kxa y)) - gi(kx7k ) (220)

Jor k, = —3k7®*, L3k —1; k, = =3k, Lk =1 and i =0,...,N,—1.

To turn this question into a mathematically precise one, we have to specify the space of
admissible solutions. This, together with the solution of the above problem, is the topic of
the next section. Since the solution of this problem involves Fourier inversion in the spatial
domain and interpolation in the time domain, we will refer to (2.20) as the mixed Fourier-
interpolation problem, or simply, the mixed problem.

3 Solution of the mixed Fourier-interpolation problem

In this section we consider the mixed problem (2.20) which was formulated at the end of
the previous section. To save writing we will use the notation k = (k. k,), g, , = g/(k,. k,),

. = tik,, y) K = {(k,. k,):k, = —3ki™, .. k7 =1k, = — 3k, ., 3kr*—1}and | =
{i:i=0,..., —1}. Then the problem to be solved reads as follows:

Problem formulation Given a sequence of real numbers {t, ,} and a sequence of complex
numbers {g, ;}, find a function f:D x I- R such that

fk,t, ) =g, keKiel. (3.1)
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We assume that for each k the sequence {7,(k)},., consists of distinct real numbers. This
problem has been extensively studied by one of us [7-9, 15], and we briefly summarize the
results here. For the details the reader is referred to the quoted references. First we consider
the solution of problem (3.1) in a Hilbert space setting in §3.1. §3.2 is concerned with
stability and error estimates. Regularization is treated in §3.3 and in §3.4 we consider
optimal reconstruction in the presence of noise.

3.1 Moment problems in a Hilbert space

The interpolation problem (3.1) has a natural decomposition into a space-dependent and
a time-dependent component. We assume that for each r:= (x, y) e D, the function f(¥): t >
f(r, 1) is an element of a certain Hilbert space . The inner product on +# is denoted by
angular brackets <+, ->,. The function f itself is assumed to be an element of a larger
Hilbert space # with inner product

Gigdy :=f g1y dr. (3.2)

Let {h;},., be an orthonormal basis for # and {e,},.x be the (orthonormal) Fourier basis
for L¥(D),
e (r) = 2m)te*, (3.3)

where without loss of generality we have taken D =[—m,#]*>. By construction,
{€xM}kex. sy 1S an orthonormal basis for #° = L*(D, #’) and any fe %" has the representa-
tion

f= Z {feahyyeh,. (3.4)

kelK, iel

The (generalized) Fourier transform f(k): f(k, 1) of fis defined by

) = f S aFdr. (3.5)

Furthermore, we assume that # is a so-called Reproducing Kernel Hilbert Space (RKHS)
[16]: for all ze R, there exists an element Q, € # such that point evaluations can be written
as inner products:

h(t) = <h,Q,>,, foreachhesf.

The function Q:R?— C with Q(z,s) = Q,(s) = {Q,, O, is called the reproducing kernel.
For the mixed problem we can perform a similar reformulation: define ¢, (£) = O(#; ;> 1),
kelK, iel. Then

[t ) = SR P e (3.6)

where f(k) is defined in (3.5). Since, for arbitrary he #, (f,e,hd, = (f(k),h}m (3.1) can
be reformulated as a so-called ‘moment problem’

e ow = 8o VhkeK,Viel (3.7
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In practice we only have a finite number of measurements, so I and [ will be finite index
sets. Therefore (3.7) will not have a unique solution. This problem is solved by considering
the so-called minimum norm solution, i.e., the solution of (3.7) with smallest norm [16]. We
will only consider Hilbert spaces such that, for all keK, the system {g, .}, is linearly
independent in # as long as the sequence {f, ,},., consists of distinct real numbers. Then
the system {e, ¢y i1 4ex 1S @ linearly independent system of vectors spanning a linear
subspace of #°, denoted by #,. The solution of minimal norm to problem (3.7) is unique,
lies in ¥, and is given by

f=Z e, (3.8)
kel
where ¢, is defined by
=X & Vi (3.9

iel

Here i, ,, which is orthogonal to ¢, ;, j % i, is given by

Yo = 2GRy Pu o (3.10)

jel
where, for each ke K, G(k) is the so-called Gram matrix, defined by
(G = <P, pp Pr, 9 = QUi s 14 )> Vi jel. (3.11)

So in fact the solution is obtained by finding, for each fixed frequency vector &, a solution
¢, to the moment problem (3.1) and then taking the inverse Fourier transform:

S =T aq)efr) = T ) T g (G k), ¢k, ). (3.12)

kel keK i,jel

Example 3.1. Bandlimited functions

Let for each re D the temporal Fourier transform of ¢t — f{(r, t) be zero outside the interval
[—r,r]; here r is called the bandwidth. Then 4# is the Paley—Wiener space P, of bandwidth
r defined by P,:={feL*(R):suppf<[—rr]}, where ‘supp’ denotes the support of a
function. The reproducing kernel for a given bandwidth r is given by

Q(t,8) = +/(r/m)sinc, (s—tm /r).

Here sinc, denotes the sinc-function which is defined by

sin (rt) -
sinc, () =4 rt (3.13)
1 t=0.

For the mixed problem we first have to determine the bandwidth r, for each ke K, which
is not known in advance. In that case we choose as the bandwidth r = sup {r,: ke K} where

. i
r= mf{——————:ie H}.
ltk, i tk, i+1|
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Example 3.2. Spline functions

Here we follow mainly [16, 17]. The mesh A of the interval [a, b] is a sequence of distinct
real numbers {t,,...,t,} such that a=1t <1,<... <1, =b. The space 4™ of spline
functions of degree m is defined by # ™™ = {fe C™ '[a, b]| fis a polynomial of degree m or
less, on each mesh interval}. The reproducing kernel in the space J#*"~* of splines of odd
degree is given by

__”‘l(t—a)"(s—-a)’” n-1 _ n+k+l(t_a)2n*k~l(s_a)k (___l)n _ yene1
Q5= E —r— + 2 (=D Gn—k—)TR Taeopi¢ Y (B9

where £ = (¥ for ¢ > 0 and zero for ¢ < 0.

3.2 Stability and error estimates

In this section we give error bounds for the aliasing error, the amplitude error and the time
jitter error for the mixed problem in the case of interpolation by sinc and spline functions;
details can be found elsewhere [8, 9, 15].

3.2.1 The aliasing error

Suppose the function f we have measured (i.e. flk, 1) = 8> for all ke i and for all iel)
does not lie in the function space L3(D, #°). However, the approximation £, being a solution
to (3.1), is an element of L*(D, #). This causes an error,

EY :=f ILf(r, ) =fCr, ., dr, (3.15)

which is called the aliasing error. Here the supremum norm is defined by

1/ Crs )l = sup,eg £, DI

We give a bound for the aliasing error for the mixed problem in the case of sinc- and spline-
interpolation.

If # = P,, we only have an estimate for the case of equidistant sampling: ¢,(k) = i for
all keK and iel

Ejr < J f |f(r, 0)| dwdr. (3.16)
D JR\[-r, 1]

Here the Fourier transform is taken with respect to time, as is indicated by the Fourier
variable w.

The following estimate for spline functions holds for arbitrary distinct sampling points
(now the Fourier transform is taken with respect to space),

EX"™ < C(supgex ) T

0 =2 0
2z Ef(k’ ')—a—tf(ka') , (3.17)

L¥a,b)

where C = 27* and the mesh-width is defined by A, = sup, (|4 ;11— & 4l-



252 J. B. T. M. Roerdink and M. Zwaan

3.2.2 The amplitude error

Suppose the data {g, ;} are perturbed to {g; ;. The solution that corresponds to the
perturbed problem is called f* and satisfies

fikt, ) =g, YkekViel. (3.18)

The amplitude error is defined by

Bl ¢=(J £, ) =1, ')Ilidr>- (3.19)
D
Let # = P, or # = A#*"*. The following estimate holds:
Effy < suPexc G0V Corlle =&l 2 (3.20)
Here C,, = 1 if # = P,, and, if # = A",
n1(h—g)% 3 (b__a)n—§
C yrnt —sup{(Eo Ap )’(n—l)!\/2n——1 . (3.21)

3.2.3 The time jitter error

Suppose the time points {z,(k)} are perturbed to {z;(k)}. The solution that corresponds to the
perturbed problem is again denoted by f”, and satisfies

fkf(k) =g, Viel. (3.22)
The time jitter error is defined by

EY 1=(J IfGr, ) =S"(r, ‘)Ilidr)- (3.23)
D

Assume (for each k& € K) the time points {z,(k)},,, to be a sequence of distinct real numbers.

Let the time points ¢,(k) be perturbed to #;(k), such that,

|t(k)— (k)| <y, VkelK,Viel. (3.24)

Let {g; ,} be the system of vectors corresponding to the perturbed problem and (G'(k)),; =
{@k j»Pi.1>» the associated Gram matrix. Then the following estimates hold:

Efr < supye (|G (R HIGR) | IGH)) (€7 = 1) gl 2y (3.25)

211 1 -1 1 ; 2 %
EY T <sup QUG R+ G (k)IlflltrtkII/z(u))(Z +l|gk||3m))- (3:26)

kel

0

3.2.4 Conclusions about stability

An inversion problem is called stable if small perturbations of the data yield small errors
in the solution. From the estimates (3.20), (3.25) and (3.26) we conclude that problem (3.1)
is stable for perturbation of the data and time points. We say that problem (3.1) is well-
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conditioned if the norms of the matrices are close to one. Otherwise it is called ill-
conditioned. In the following we discuss the different error estimates.

The aliasing error for sinc-interpolation, formula (3.16), depends on the energy outside
the band [—r, r]; if for each re D, the measured function f(r, ) has a (temporal) Fourier
transform with negligible energy outside [—r,#], then the aliasing error will be small. The
aliasing error for spline-interpolation, formula (3.17), depends on the temporal derivative.
If the spline has a high order, then it tends to oscillate quickly. So, if the measured function
does not oscillate quickly, the order of the interpolating splines should not be high.

The amplitude error for sinc- and spline-interpolation, formula (3.20), depends on the
norm of G(k)™. If the time points {7, ,},., (for a certain k € [) are lying close to each other,
then the problem becomes ill-conditioned for perturbation of the data.

The time jitter error for sinc-interpolation, formula (3.25), becomes ill-conditioned for
perturbation of the time points if (for a certain k € K) the elements of the sequences {7 ;};
or {f; };e; are lying close to each other. The time-jitter error for spline-interpolation,
formula (3.26), depends on (G’(k))! and on the temporal derivative of the reconstructed
function. So the problem becomes ill-conditioned for perturbation of the time points if (for
a certain k € <) the elements of the sequence {1, ;},, are lying close to each other, or if the
order of the spline is too high. This result will be illustrated by means of a simulation with
synthetic images in §4.

3.3 Regularization

In those cases where the problem becomes ill-conditioned, we need to stabilize the solution
methods. Procedures which deal with this problem go under the name of regularization [18].
Consider the following inversion problem. Let T:# —/*(l) be a bounded linear operator
between the Hilbert spaces # and /*(l). Let the data vector g = {g,},., be given. We want
to find a function fe # such that

Tf=g. (3.27)

If the inverse of T exists and is bounded, then the problem can be solved directly in a stable
manner. However, if this is not the case, then either the problem cannot be solved, or else
the solution is not stable. To make up for this deficiency, we introduce a bounded linear
operator 77, y > 0, from /*(1) into #, such that 7”g minimizes the expression

ITf=glz+vILf 1

over all fe #. The sequence {T7},,, is called the Tichonov—Phillips regularization of T,
and v is called the regularization parameter. It turns out (Natterer [19, p. 80]) that

T7g=T*(TT*+vyI)'g, forgel*(), (3.28)

where T* denotes the adjoint operator of T and 7 is the identity operator on .

In the case of the mixed moment problem (3.7), one can derive from (3.28) (the proof is
straightforward, but not trivial) that the corresponding Tichonov-Phillips regularization
{T 7,50 18

70 =% er) T & (GE)+yD))y@s, (), (3:29)

kel i,jel

for g:={g; Jkex.ic1 €C2(K x 1), and G(k) the Gram matrix (G(k));; = i j» Pu. 1) -
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An important observation is that just as for the original problem, the regularized
solution decomposes into a sum of solutions to smaller moment problems, one for each
wave vector k. For practical computer implementation, this has the advantage of reduced
data storage requirements. Also, it opens up the possibility of parallel computation if speed
is essential, as will be the case for medical applications.

3.4 Optimal reconstruction in the presence of noise

In the following we will consider a stochastic version of the moment problem (3.7) by
adding external noise to the data. So consider the mixed problem

frewPeow e, =8 kel Viel, (3.30)

where {i; ek ier 1S @ sequence of random variables with zero mean and non-singular
covariance matrix V given by

[E(uk,iuk’,j) = I/ij(ka k). (3.31)

Here E denotes the mathematical expectation (statistical averaging) operator. The BLUE
(Best Linear Unbiased Estimator) is given by [20-22] f=T*TT*+yV)'g. Under the
assumption that the covariance matrix ¥ is diagonal in the Fourier variables, V,(k,k") =
3y i Q,,(k) for some non-singular matrix Q, one easily shows that

Sl = kEK elr) X P DGR+ QKN ;8. (3.32)
€ i, )€
where (G(k)), ; = {@x »Ps ;> is the Gram matrix at a single wave vector k in the absence of
noise. We thus recover the well known result that the optimal reconstruction in the presence
of noise gives rise to a weighted Tichonov—Phillips regularization [23], which under the
assumption of a diagonal covariance matrix decomposes again into a sum of interpolation
problems for fixed k&, followed by Fourier inversion.

4 Reconstruction of synthetic images

In this section we describe the reconstruction of synthetic images, referred to as ‘chest
phantoms’, which are a model of a cross-section of a beating human heart. We first describe
the chest phantom (§4.1) and the generation of the corresponding synthetic data (§4.2). §4.3
discusses the reconstruction from synthetic data for various interpolation algorithms.
Finally we consider reconstructions for perturbed synthetic data (§4.4).

4.1 Definition of the chest phantom

The chest phantom we use is taken asin [1], and is defined in terms of several (solid) ellipses,
some of which are changing as a function of time (see Fig. 5).

The kth ellipse E, is parametrized by five parameters «, (), 8,(¢), p,(2), o.(¢) and 6,(2),
where the pair (e, (1), 8,(f)) denotes the centre of the ellipse, p,(t) and o () are the length
of the major and minor half axes and 6,(¢) is the angle of the ellipse with respect to the
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FIGURE 5. Sketch of the ellipses defining the chest phantom. Ellipses 2, 6 and 7 move
periodically.

horizontal axis, all at time ¢. To every ellipse is assigned a ‘grey-value’. The grey-value at
a point equals the value associated to the smallest ellipse surrounding the point. The values
of the parameters and grey-values of the ellipses are given in the following table, where E,,
E,, etc., denotes the zeroth, first, etc. ellipse. The parameters o, 3, p and o are given in pixel
units, where we use a square of 256 x 256 pixels; 6 is given in radians in units of 7/16 and
grey-values range from 0 (white) to 255 (black). Here

M, () = 35(1 +0.3sin (271t +7/4)), Myu(t) = 28(1+0.3 sin (27t +7/4))
Mg, (£) = 112—8 (1 +0.3 sin (2t + 7r/4) + 0.2 sin 2m1)),

My(t) = 105+ 11 (1 +0.3sin (2771 -+ 7/4) + 0.2 sin (27r1)),

Mey(£) = My,(1) = 12(1+0.3sin (21 +7/4) +0.2 sin (2771)),

M., (£) = 112+8 (1 +0.3sin (27rf) + 0.1 sin 27t +7/2))

M_,(1) = 105—15(1 +0.3sin (2771) + 0.1 sin mz +71/2))

M () = 2M,,(1) = 10(1 + 0.3 sin (271) +0.1 sin (271 + 77/2)).

So three of the ellipses carry out a periodic motion with period 1 generated by sinusoidal
terms with the same frequency but different relative phases.

4.2 Generation of synthetic data

In the following we describe the simulation of the MRI measuring procedure in the case
of our chest phantom (cf. §2.2). That is, we want to generate times R, of R-waves,
measurement times f, , and Fourier coefficients g, , which will serve as input to the
reconstruction procedures.
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Table 1 Parameters of the ellipses defining the chest phantom

o B p o O(m/16rad)  grey-value
E, 128 128 120 80 0 200
E, 128 128 110 70 0 128
E, 112 105 M, () M,,(2) 5 64
E, 128 175 10 16 0 64
E, 104 175 5 10 ~5 64
E, 152 175 5 10 5 64
E, M, (1) M,(1) M gy(1) My, (1) 0 255
E, M, (D) M,,(1) M, (D) M., (1) -5 255
E, 220 82 8 4 —4 255
E, 36 82 8 4 4 255
E, 128 52 8 4 0 255
E,, 220 174 8 4 4 255
E, 36 174 8 4 —4 255

Generation of heart-interval times The times R, of R-waves are sampled from a uniform
distribution on the interval [T4(1 —¢), Tx(1+€)]. Here € is a parameter determining the
relative variation of the heart-interval times. The case ¢ = 0 corresponds to a perfectly
regular heartbeat.

Generation of measurement times This is free to the experimenter to choose. We will use the
procedure of §2.2, formulae (2.13) and (2.15):

1k, k) = (k,N,, +DT.,+k, 0t 4.1)

where (k,,k,)eK,iel, and where N, is the number of profiles, T,,, the repetition time, and
&t the time between successive samples in a profile.

Generation of Fourier coefficients Let a single heartbeat of the chest phantom be denoted
by f(r, 1), where re D, te[0,1]. We extend this function to a larger interval [0, R,) = R by
‘inverting’ the time-to-phase conversion of §2.2. That is, given the sequence of times R, of
R-waves, 0 = R, < R, < R, < ... < R,, we define F: D x R— R by (cf. formula (2.12))

F(r,7):=f(r, (1)), forre[R,R,,,), 4.2)
where Hr) = %' 4.3)

That is, F consists of a sequence of shifted and rescaled copies of f, modelling the beating
human heart with varying RR-intervals. From the formula (4.2), the Fourier coefficients of
this function F with respect to the spatial parameters r = (x, y), are given by Kk, 7,(k)) =
Ak, (r(k))). Since fis the known synthetic image, the corresponding Fourier coefficient can
be computed as soon as the rescaled times #(7,(k)) have been determined. This has to be
done for all kel iel.
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4.3 Reconstruction from synthetic data

In the following we compare the original (the phantom) with several reconstructions /.
Input of the reconstruction algorithms (as described in §3) are the times R, of occurrenée
of the R-waves, the measurement times 7., and Fourier coefficients g, , = F(k,7, ,) as
described above. The reconstructions are performed by first interpolatihg in the time-

domain for each fixed Fourier frequency k, followed by Fourier inversion at a number
D« of equidistant phases

b= i/Bros i=01,...0 _—1. (4.4)

For the time-interpolation we use first or third order spline interpolation and sinc
interpolation, referred to as order 1 reconstruction, sinc reconstruction, etc. The
interpolating functions in the case of order 1 and order 3 reconstruction are forced to be
periodic by the use of appropriate boundary conditions. In the case of sinc-reconstruction
this cannot be done, which causes the first and last phases of the reconstruction to be poorer
in quality than the middle phases (see below). We also implemented the original technique
of Bohning [14], referred to as order 0 reconstruction. Here the value at phase ¢, is taken
to be the average of the data in the interval [¢,, ¢,.,), where a value zero is assigned if no
data fall in this interval. If @, is chosen larger than N,,, this results in many assignments
of a value zero to the interpolated Fourier coefficients, leading to severe aliasing artefacts
(see e.g. Fig. 8).

The time markers 7,(k,.k,) depend on both &, and k,. For computational efficiency, we
neglect the (small) measurement time interval T, of a complete profile and assume that all
data within one profile are measured at the same time, implying that the measurement times
1., only depend on k,. Since the Gram matrix G(k) in formulae (3.29) or (3.32) depends on
k through ¢, , (see §3.1), G(k) also depends on k, only. So we only have to perform one,
instead of k™** Gram matrix inversions per profile, resulting in a marked increase in
computational efficiency. For the value of 7., = 0.01 used in the reconstructions below, we
found that the neglect of T, results in an error of at most 5 %. If, after rescaling, two time
markers coincide the corresponding measurements are averaged. To prevent numerical
instability we introduced in the case of order 3 and sinc interpolation a small number
‘interval’: time markers that lie within a distance ‘interval” from each other are considered
to be at the middle of this interval and the corresponding measurements are again averaged.
This procedure can be considered as an ad hoc form of regularization. We also used
regularized sinc-interpolation by the Tichonov—Phillips method (referred to as reg. sinc
below) with a value y = 0.01 for the regularization parameter. (We also experimented with
very large values of ‘interval’ in the (unregularized) sinc reconstruction: then the
reconstruction errors become comparable to the results of reg. sinc, but the amount of
spatial blurring in the region with moving ellipses becomes much larger.)

The reconstructed functions are computed at a rectangular pixel grid of dimensions X,
by Y,.. The following parameter values were used in the generation of synthetic data:

kmox = jmax = 128, T, = 0.01,¢ = 0.25. (4.5)

The value of T}, is arbitrarily taken to be unity (it is irrelevant because of the time-to-phase
conversion), whereas the repetition time is determined by T, = Tpx(1+€)/ N, 80 that also

9 EIM 4
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FIGURE 6. Original chest phantom. From left to right, top to bottom: phases 0-7.

in the longest heartbeat (which has length T,(1+¢)) the full number N, of profiles is
measured. For the reconstructions we use the values

Xmax = Ymax = 128’ ¢max = 8' (4'6)

The reconstructed phases are numbered from 0 to 7. Original images are shown in Fig.
6. Reconstructions are presented for N, = 15 (Fig. 7) and N, = 5 (Fig. 8). In each case the
first row displays order 0 reconstruction, the second row order 1, the third one order 3, the
fourth one sinc-reconstruction and the fifth regularized sinc-reconstruction. In each row we
show reconstructions at phases 0, 3 and 6 from left to right. In the case that N, = 5 we see
that the first and third order reconstructions are comparable in performance and give better
results than zeroth order reconstruction. The (regularized) sinc-reconstruction is of lower
quality, especially in the first phases, which may be due to the intrinsic nonperiodicity of
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FIGURE 7. Reconstructions at phases 0, 3 and 6, from left to right. (N, = 15). First row: order 0;
second row: order 1; third row: order 3; fourth row: sinc; fifth row: reg. sinc.
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FIGURE 8. Reconstructions at phases 0, 3 and 6, from left to right. (N .= 5). First row: order 0;
second row: order 1; third row: order 3; fourth row: sinc; fifth row: reg. sinc.
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Table 2 The reconstruction error at eight phases for various interpolation algorithms, with

N,. = 5. Phase ¢, corresponds to time i/®, ..., with @, =8

Po & o8 Py A P Pe b:
Order 0 43.4 43.3 44.6 73.0 74.9 57.1 71.8 41.7
Order 1 9.20 7.14 7.84 10.2 8.37 4.80 5.65 11.1
Order 3 9.82 7.70 8.34 11.1 9.24 543 5.81 10.2
Sinc 43.3 24.7 10.9 13.7 10.5 8.71 8.08 15.9
Reg. sinc 39.8 18.4 9.92 11.7 10.2 6.75 7.64 14.7

Table 3 The reconstruction error at eight phases for various interpolation algorithms, with
N,. = 5. Phase ¢, corresponds to time i/®, ., with @, =38

ma;

¢0 ¢1 ¢‘l ¢3 ¢4 ¢5 ¢6 ¢7
Order 0 9.67 3.31 11.5 11.3 7.13 2.29 8.35 1.8
Order 1 5.33 2.15 4.57 6.48 4.69 1.69 2.78 6.42
Order 3 5.65 2.71 5.01 6.80 4.80 2.10 3.01 6.74
Sinc 89.1 10.6 6.84 7.29 5.06 3.34 5.77 17.7
Reg. sinc 36.8 4.98 6.45 7.02 5.04 3.04 3.85 7.48

the interpolating function. When N, = 15, all reconstructions become comparable, except
for the initial and final phases of the sinc reconstruction and, to a lesser extent, the reg. sinc
reconstruction.

One sees in all reconstructions (in particular for N, =5) a vertical band of noise
superimposed on the region of the image which contains the moving ellipses. This artefact
is a combined effect of the motion and the non-uniform sampling in time. That the band
runs in the vertical rather than the horizontal direction is caused by the particular
measuring strategy of retrospective gating: the main asynchronicity is in Fourier coefficients
with different values of k,, whereas Fourier coefficients with different values of k, are
measured at virtually the same time. This artefact turns up in the reconstruction of real
MR-images too.

To obtain an objective quality measure, we also compared the differences of the original
and the reconstructions in L*norm, i.e. we computed

Fmax~1 Ymax~1
error= 3 X {f,,(x,y, phase)—f. . (x,y,phase)}®, 4.7
=0 y=0
where f,,, and f,.. denote the original and the reconstructed image respectively (see Tables
2 and 3).

4.4 Reconstruction from perturbed synthetic data

In order to test how stable the algorithms are, we perturbed the measured Fourier
coefficients (amplitude error) and the measurement times (time jitter error), respectively.
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FIGURE 9. Reconstructions from perturbed data at phases 0, 3 and 6, from left to right. (N, =
15). First row: order 0; second row: order 1; third row: order 3; fourth row: sinc; fifth row:
reg. sinc.
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Table 4 Reconstruction error at eight phases from perturbed Fourier coefficients

(N, =15)
¢0 ¢1 ¢2 ¢3 ¢~1 ¢5 ¢li (l 7
Order 0 20.0 18.0 21.2 21.1 19.4 17.7 19.6 215
Order 1 19.2 18.3 18.6 19.7 19.0 18.3 18.5 19.2
Order 3 227 22.8 23.1 23.2 22.6 23.0 224 23.6
Sinc 390 46.6 24.6 23.1 22.1 242 344 79.7
Reg. sinc 53.4 24.7 23.3 230 22.7 225 227 247

4.4.1 Reconstructions from perturbed Fourier coefficients

We added a random number 7, ; to the data g, , (for all ke K, and iel), i.e. the perturbed
data become

81 =8t kel iel

The (complex) random numbers 7, ; are chosen independently such that their real and
imaginary parts are uniformly distributed in the interval [— o, ¢]. The different types of
reconstructions corresponding to the perturbed data are shown in Fig. 9 where the value
of ¢ is chosen so large (¢ = 4000) that a marked effect on the reconstructions becomes
visible.

According to formula (3.20), the bound on the amplitude error for all reconstruction
algorithms depends on the norm of the inverse of the Gram matrix and on the difference
between {g, ,} and {g} ;} in #*-norm. This is in agreement with what one may visually infer
from the figures, which again show that in the case of sinc-reconstruction the problem is
severely ill-conditioned, which is much improved by regularization. Table 4 gives the
difference between the reconstruction and the chest phantom in L*-norm. Note the
complete degradation of the sinc-reconstruction at phase 0. The other reconstructions now
essentially have the same quality.

4.4.2 Reconstructions from perturbed measurement times

Finally, we discuss the effect due to perturbation of the measurement times. We added a
real random number 7, ; to the measurement time 7, , (for all kelK, and iel), ie. the
perturbed measurement times become

L=l kel iel

The random numbers 7, , are chosen uniformly and independently from the interval
[—0.08,0.08]. The reconstructions corresponding to the perturbed measurement times are
shown in Fig. 10.

From this figure and the error results in Table 5 (particularly at phase 0) we observe that
the sinc, order 1 and order 3 reconstruction do not behave well for the time jitter error. This
is in agreement with formula (3.26), which shows that the bound on the aliasing error
depends on the time derivative of the interpolating function. We also observe the
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FIGURE 10. Reconstructions from perturbed time markers at phases 0, 3 and 6. from left to right. (V.
= 15). First row: order 0; second row: order 1; third row: order 3; fourth row: sinc; fifth row:
reg. sinc.
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Table 5 Reconstruction error at eight phases from perturbed time markers (N = 15)

¢0 ¢1 ¢2 ¢3 ¢4 955 ¢ﬁ ¢7
Order 0 16.6 17.9 33.7 20.9 12.5 17.2 18.2 12.8
Order 1 108 5.15 6.79 9.28 7.22 3.77 4.66 8:63
Qrder 3 417 96.5 13.8 13.5 10.9 6.68 13.4 318
Sinc ‘ 207 38.7 63.0 354 9.75 8.96 16.7 69.9
Reg. sinc 26.0 5.46 6.79 8.48 7.07 3.67 5.01 8.46

appearance of small white ‘clouds’ in order 0-3 reconstruction. The sinc-reconstruction is

again very bad, but (except for the initial phase) the regularized sinc-reconstruction is now
the best of all reconstruction algorithms.

5 Reconstruction of real MR-images

In this section we present reconstructions from real MRI data. We obtained the time points
t,,; by means of linear stretching, formula (2.11). The parameters in the reconstructions are:
k7o = ke =128, N, = 50. Results, at phase 4 of the heart cycle, are shown in Fig. 11.
A sketch of the anatomical details is given in Fig. 12. The two ellipse-like structures on the
left and the right side are cross-sections of the arms. The big circular part is the bone of the
chest. The heart is located at the front side of the chest (in the picture it is at the top). The
grey part of the heart is the muscle tissue and the lighter parts are the heart-chambers.

Interesting features which can be deduced from MR-images, especially in movie mode,
are (i) passive movement of the heart-muscle, (ii) a black dot can on the muscle tissue in
the case of a heart attack, (iii) the ventricular, or atrial septal defect (this is a small hole in
the tissue that separates the ventricles or the atria respectively). Important in this case is
how well the heart muscle (in particular, its boundary) is reconstructed, and how little noise
is contained in those parts of the image which contain moving heart structures. In the order
0 reconstruction the contours of the heart muscle are somewhat vague. In the order 1 and
order 3 reconstruction they are less vague with lesser noise on the image than the order 0
reconstruction. The regularized sinc-reconstruction behaves better than sinc reconstruction,
but is not a real improvement compared to order 0 reconstruction.

6 Discussion and future prospects

The main goal of this paper has been to perform a quantitative comparison of various
reconstruction algorithms for cardiac magnetic resonance imaging which all attempt data
synchronization after completion of the data acquisition process. We formulated a
mathematical model describing the measurement process and solved the model equations
in a Hilbert space framework. It turns out that the solution consists of two parts: (i)
perform an interpolation in time for each set of spatial Fourier coefficients Skt et
(ii) do the inverse Fourler transform to obtain f(r, ¢,) for a number of fixed phases ¢, =

i/D i=0,1,.. ®,,.—1. We considered various interpolation methods: piecewise

max?
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FiGure 11. Reconstructions of MR images at phase 4. Top left: order 0; Top right: order 1;
Middle left: order 3; Middle right: sinc; Bottom: reg. sinc.
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FIGURE 12. Sketch of anatomic details of the cross-section of the chest.

constant (‘order 0°), which is the method originally used by Bohning [14]; piecewise linear
(‘order 17); cubic spline (‘order 3°); sinc-reconstruction (*sinc’); and the Tichonov-Phillips
regularization of the sinc-reconstruction (‘reg.sinc’). The algorithms were tested on
synthetic as well as real data. In the case of real data it is unavoidable that there are model
deficiencies, since many (physical) effects are not correctly incorporated in the model. For
example, we completely neglect relaxation times and assume that what is measured is
exactly the spatial Fourier transform of the proton density. More importantly, we have
made the basic assumption that the beating heart behaves essentially the same in all heart
beats, apart from a linear rescaling of the time points to a standard heart interval.

Therefore we have developed a chest phantom, i.e. a sequence of synthetic images
consisting of a number of moving ellipses, for which we imitated the measuring process as
well as the precise form of rescaling. The goal of these simulations is to test the accuracy
of the temporal synchronization process, leaving out all other factors which complicate the
reconstruction in practice. Quantitative comparisons have been made of the various
interpolation routines by computing the difference in L?>-norm between the original and the
reconstruction, which show that for unperturbed data the order 1 and order 3
reconstructions are best. The differences between the various methods increase as the
average number N, of profiles is decreased. The sinc-reconstruction suffers from the defect
that, in contrast to the case of order 1 and order 3 interpolation, one cannot incorporate
periodicity of the interpolating function, which causes the first and last phases of the
reconstruction to be poorer in quality than the middle phases. This could be improved by
periodically extending the data points and perform the sinc-reconstruction on the enlarged
data set. A disadvantage would be that the corresponding Gram matrices increase in size.
We also did some tests with perturbed Fourier coefficients and measurement times to
determine stability under perturbation. It turns out that in that case the regularized sinc-
reconstruction is the most robust method. Cubic spline interpolation is very sensitive to
perturbation of the measurement times.

For the case of real data we find from visual inspection of the images that order 1 and
order 3 behave equally well and better than order 0, while (regularized) sinc gives inferior
results. The comparison with the reconstructions from synthetic data is complicated by the
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fact that in this case the number of profiles is fairly large (N, = 50). However, since order
1 and order 3 reconstruction are robust and fast they should be preferred to order 0 in
practical applications.

A final remark concerns the so-called ‘breathing artifact’, which is caused by respiratory
motion and produces ghosts of the moving parts in the image [2]. The phenomenon can be
explained as a kind of aliasing or interference effect between the periodicity of the
respiratory motion and the periodic increase of the magnetic field gradient in the phase-
encoding direction. The effect is most prominent if the patient during data acquisition is
breathing in a very regular way. For the data set used in this paper this was apparently not
the case. A method, called Respiratory Ordered Phase Encoding (ROPE), has been
proposed to correct for the breathing artifact [24]. Here one needs information about the
respiratory motion during the data acquisition, so in this sense the method is based on the
same principle as ordinary cardiac gating. An alternative which suggests itself in the light
of the present paper, is to develop a ‘retrospective cardiac-respiratory gating method’, in
which one would register both the electrocardiogram and the respiratory motion during
scanning, and order the data retrospectively both with respect to the cardiac as well as to
the respiratory state. A crucial question which would have to be answered is whether
accurate monitoring of the respiratory motion is feasible.
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Appendix: List of symbols

w, Larmor frequency

W, frequency of RF pulse

m, transverse magnetization

m, longitudinal magnetization

3t time between two samples in a profile

AG, step size of the phase-encoding gradient
field of view in the x-direction

field of view in the y-direction

position vector (x,y)

number of horizontal pixels in the image plane
number of vertical pixels in the image plane
spatial Fourier variable

temporal Fourier variable

readout gradient

phase-encoding gradient

slice selection gradient
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A£,  horizontal sampling distance in the spatial Fourier plane (= 27/L,)
Ag,  vertical sampling distance in the spatial Fourier plane (= 2n/L)
k, integer counting the number of horizontal samples in the spatial Fourier plane

k, integer counting the number of vertical samples in the spatial Fourier plane
k7® maximum value of k,

y° maximum value of k,
k wave vector (k,,k,)

<

i integer counting the number of profiles for a fixed value of k,
R, time of the kth R-wave ‘
N,.  total number of profiles for a fixed value of &,

T,  repetition time between profiles

1.,  measurement time of a profile

T.r  average duration of a heartbeat

max  iNteger counting the number of phases to be reconstructed
relative variation of duration of heartbeats
actual time during acquisition (— o0 < 7 < )
t rescaled time or relative heart phase (7€[0, 1])
ji(r, t) proton density at position r and heart phase ¢
f(k,t) spatial Fourier coefficient of the proton density f with wave vector k at heart
phase ¢
[ the function 7~ f(r, 1)
f(k)  the function 1+ f(k, 1)
v regularization parameter

N ey
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